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As an engineering material, DNA is well suited for the construction of bio-

chemical circuits and systems, because it is simple enough that its

interactions can be rationally designed using Watson–Crick base pairing

rules, yet the design space is remarkably rich. When designing DNA sys-

tems, this simplicity permits using functional sections of each strand,

called domains, without considering particular nucleotide sequences. How-

ever, the actual sequences used may have interactions not predicted at the

domain-level abstraction, and new rigorous analysis techniques are needed

to determine the extent to which the chosen sequences conform to the

system’s domain-level description. We have developed a computational

method for verifying sequence-level systems by identifying discrepancies

between the domain-level and sequence-level behaviour. This method

takes a DNA system, as specified using the domain-level tool Peppercorn,

and analyses data from the stochastic sequence-level simulator Multistrand

and sequence-level thermodynamic analysis tool NUPACK to estimate impor-

tant aspects of the system, such as reaction rate constants and secondary

structure formation. These techniques, implemented as the Python package

KinDA, will allow researchers to predict the kinetic and thermodynamic

behaviour of domain-level systems after sequence assignment, as well as to

detect violations of the intended behaviour.

1. Introduction
DNA is a widely used engineering substrate for biochemical circuits and

systems. Using simple Watson–Crick base-pairing rules, molecules can be

designed to fold into stable conformations and large assemblies [1], but

they can also be programmed to implement dynamic systems using toehold-

mediated DNA strand displacement [2] for triggered rearrangement of

molecular components [3]. Experimental demonstrations have shown that

DNA-based circuits can carry out a diverse range of information-processing

tasks, including amplification and analogue computation [4–12], digital logic

gates and circuits [13–18], neural network pattern recognition [19–21], prob-

abilistic circuits [22] and the implementation of chemical reaction network

(CRN) dynamics [23,24]. Theoretical studies have established that DNA-

based circuits are capable of arbitrarily complex digital and analogue circuits

[25–27], efficient neural network computation and autonomous learning

[28,29], the full range of dynamical behaviours supported by mass-action

kinetics of abstract CRNs [30–32], and even the full range of algorithmic

behaviours supported by Turing machines [33,34].

DNA-based circuits can be large and complex, involving interactions between

many DNA molecules each composed of multiple interacting DNA strands.

Experimentally demonstrated systems have involved hundreds of synthesized
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molecules with thousands of potential interactions [16,19,21].

Design of these systems can be a time-consuming process

because the sequence and length of every DNA strand must

be carefully chosen to tune the rate of each reaction, as well

as to avoid interactions between system components that

should be orthogonal. This paper focuses on the non-trivial

problem of system verification, that is, checking that a system

as a whole behaves as designed. As DNA-based systems

grow in size and complexity, there is an increasing need

within the nucleic acid programming community for a

unified framework toanalyseandverifyarbitraryDNAsystems.

The design and verification of DNA systems is often

initially performed without regard to specific DNA

sequences by describing systems using domains, functionally

distinct contiguous sections composing each DNA strand.

Under certain idealized assumptions about interactions

between domains, it is possible to verify the system by

enumerating all possible reactions between domain-level

DNA complexes [36–38] and establishing a correspondence

with a formal description of the intended circuit function

[39–42].

Domain-level analysis may be contrasted with sequence-

level analysis, which must account for additional non-ideal

interactions between domains, such as binding due to partial

domain sequence matches. Several software packages are

available for performing sequence-level analysis without

reference to the system’s intended behaviour, both with

respect to thermodynamic equilibrium [43–45] and with

respect to kinetic pathways [46–48]. Such de novo analysis

can uncover completely unexpected system behaviour, but

this analysis can be intractable with more complex systems.

We present a novel framework for analysing and verify-

ing an important subset of DNA systems: unpseudoknotted

strand-displacement systems designed using domains. In

contrast to previous sequence-level techniques, our frame-

work aims to analyse entire systems rather than individual

pathways or collections of small numbers of molecules,

while still giving users access to detailed information about

the behaviour of a system’s components to debug potential

problems. This analysis is made feasible by using the

domain-level system description to guide sequence-level

analysis so that the behaviour of the sequence-level system

can be verified by comparing against domain-level

predictions.

Section 2 describes basic concepts and current methods of

analysing a system at the domain and sequence levels. In §3,

we propose a conceptual framework that augments existing

sequence-level analysis techniques by using the domain-

level information to guide stochastic simulations and

thermodynamic analysis. Section 4 describes four case studies

that demonstrate the use of this framework on representative

DNA strand-displacement (DSD) schemes. The framework

described in this paper has been implemented in the

Python software package KinDA (Kinetic DNA strand-

displacement analyser), available on GitHub [35] and via a

pre-built Amazon Machine Image.

2. Background

2.1. Basic concepts
A domain-level description of a DNA system represents the

strands and complexes in terms of domains rather than

specific nucleotide sequences. Each set of bound DNA

strands, or complex, exhibits a particular secondary structure.

A valid secondary structure must have each domain

unbound, or completely bound to a single complementary

domain. In this paper, we further dictate that valid secondary

structures be non-pseudoknotted (i.e. have a well-defined

dot-parens-plus representation [49]). Complementary domains

are denoted throughout this paper with an asterisk (*).

Examples of valid structures are shown in figure 1a, with

accompanying dot-parens-plus structure representations [45].

DNA interactions that generate new complexes or

changes in secondary structure are called reactions. Multiple

sequential reactions can perform an essential molecular

primitive called toehold-mediated strand displacement, in

which two complexes bind at a short domain, or toehold,

which makes a subsequent branch migration step favourable

(figure 1b). Additional molecular primitives are also available

for incorporation into DNA systems: hybridization of

complementary single-stranded domains to form a duplex,

unbinding of a duplex region for sufficiently short domains,

and strand exchange by four-way branch migration at a

branched junction. Systems built using any combination of

these primitives are called strand-displacement systems,1 and

can produce complicated and sophisticated reaction

networks.

At the sequence level, each domain is assigned a particu-

lar nucleotide sequence, and its complement’s sequence is

determined by Watson–Crick base pairing. However, in

sequence-level analysis and simulation, we allow the full

range of binding between any pair of complementary nucleo-

tides, including G-T wobble base pairs. Figure 1c shows

examples of sequence-level secondary structure, which may

not exactly match the intended domain-level structures.

Additional unimolecular and bimolecular reactions are also

possible at the sequence level (figure 1d ). Poor sequence

design can lead to sequence-level structures or reactions that

interfere with the system’s intended domain-level reactions.

2.2. Current methods of domain-level system analysis
Domain-level systems involving multiple steps of strand dis-

placement at multiple sites on different complexes can

become difficult and error-prone to analyse by hand. By

limiting the reaction types allowed at the domain level (see

§3.1), it becomes computationally feasible to automatically

enumerate all the domain-level reactions possible between a

given set of DNA complexes. Such reaction enumeration is per-

formed by the software tools Peppercorn [38] and Visual

DSD [36,37] and by the methods proposed by Kawamata

et al. [50,51]. Many reaction enumerators consider only

unpseudoknotted complexes, although expanding the range

of allowed complexes to include pseudoknots is an active

area of research [52]. Here we provide an overview of the

approach taken by Peppercorn, but the other reaction

enumerators have similar or related concepts.

Figure 2a shows an example of an entropy-driven catalyst

system [7] described at the domain level. This relatively

simple system uses six domains to define seven complexes,

with additional transient intermediates predicted by reaction

enumeration. To simplify the reaction network, one may

apply a timescale separation during reaction enumeration,

classifying all interactions as either fast or slow. By default,

unimolecular reactions are considered fast and bimolecular
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reactions slow, while reactions involving three or more mol-

ecules do not occur.2 Separation of timescales greatly

simplifies domain-level analysis of the system and can

allow complete enumeration of all reactions in cases where

the full network would be too large or infinite. Note that

timescale separation according to unimolecular versus bi-

molecular reactions correctly describes system behaviour in

the low concentration limit.

Timescale separation motivates a construct called the rest-

ing macrostate, a set of conformations that are strongly

connected by fast reactions but have no outgoing fast reac-

tions.3 Resting macrostates are stable on the timescale of the

fast reactions. Examples of resting macrostates are shown in

figure 2b,c.

Detailed reaction enumeration produces an exhaustive

set of reactions between one or more complexes in terms

of their specific domain-level conformations. Reaction

condensation creates a new set of reactions by taking the

directly enumerated reactions, referred to as the detailed

reactions, and combining each slow reaction with a series

of subsequent fast reactions into a single reaction. This pro-

cess is described in more detail by Grun et al. [38]. In

contrast to detailed reactions, these condensed reactions have

resting macrostates as reactants and products. Figure 2d

shows the condensed reactions for the detailed reaction

network in figure 2a.

The sets of detailed reactions and condensed reactions can

be examined to determine if the domain-level system specifi-

cation is logically correct. In simple systems, this verification

can be performed by direct inspection of either set of reac-

tions. In more complex systems, other methods are

necessary, such as bisimulation [41], pathway decomposition

[40] or serializability analysis [39].

2.3. Current methods of sequence-level system

verification
While domain-level verification is often a necessary prelimi-

nary test of a system, additional verification is required

after specific sequences are assigned to each domain. The

increased state space and possible molecular interactions at

the sequence level make it difficult to directly apply the tech-

niques used at the domain level. In particular, logical proof is

much more challenging. This motivates the use of alternative

approaches, such as stochastic simulation, for sequence-level

verification.

Previous methods for sequence-level analysis do not use

the original domain-level specification of a system, instead

performing de novo analysis based on the sequence infor-

mation alone [43–48]. Thermodynamic analysis tools like

NUPACK [45], ViennaRNA [44] and the mfold web server

[43] analyse the probability of allowed secondary structures

assuming the Boltzmann equilibrium has been reached.

This analysis is suitable when considering very fast reactions

because thermodynamic equilibrium is reached over short

timescales and kinetic effects are less significant.

When kinetic considerations become relevant, stochastic

simulators may be used to follow conformational changes

and reactions as they happen. Stochastic nucleic acid simu-

lators that operate at the nucleotide sequence level, such as

Kinfold [46], Kinefold [47] and Multistrand [48], consider

reaction kinetics through the space of secondary structures

via elementary steps that involve the binding and unbinding

of single base pairs. Rate constants for longer reaction path-

ways can be derived from multiple stochastic trajectories,

revealing kinetic properties hidden by thermodynamic

analysis.

(a)

(c)

(b)

(d)

12

1* 1*2*

1
2

54

5*

3
4

2

1 6

21

1 2

12

1* 1*2*

12

1* 1*2*

1
2

1

2

1* 1*2*

1 2
12

1* 1*2*

1 2

43

5*

1
254

15

4

Figure 1. Overview of DNA systems at the domain and sequence level. (a) Examples of domain-level secondary structure, specified in domain-level dot-parens-plus

form. Domain-level dot-parens-plus representations use a period ‘.’ to represent an unbound domain, a balanced pair of parentheses ‘(’ and ‘)’ to specify each pair of

bound domains, and the beginning of a new strand with a plus ‘ þ ’. (b) A simple domain-level reaction termed toehold-mediated strand-displacement, in which

an invading strand (domains 1 and 2) binds to a base strand and displaces the incumbent strand (domains 2 and 1). The toehold (domain 1) is shorter than domain

2; two strands bound merely by a toehold may dissociate spontaneously. (c) In sequence-level dot-parens-plus notation, each character corresponds to a nucleotide

rather than a domain. Owing to unintended binding between non-complementary domains, sequence-level conformations may be quite different from the designed

domain-level conformation. Illustrated is hairpin formation in a strand that is intended to have no structure, and an intermediate of branch migration in which the

tails have a spurious interaction and a helix end frays. (d) At the sequence level, additional interactions are possible due to partial binding between complementary

and non-complementary domains. Illustrated is an unproductive reaction that involves fleeting spurious binding between domains that are not designed to be

complementary.
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While it is possible to collect sequence-level data

through tools like NUPACK [45] and Multistrand [48], a

naive brute-force approach of simulating an entire system

is usually too slow and inefficient for anything other than

simple DNA strand-displacement systems. A reasonable

simplification is to simulate only parts of the system at a

time; to make this idea effective, the simulations must be

chosen intelligently so that data about the complete

system can be inferred from data on its components. In

the subsequent sections, we show that domain-level analy-

sis can provide a ‘sketch’ of system behaviour appropriate

for this guided analysis.

3. Methods
In this paper, we describe a two-part framework for performing
probabilistic sequence-level verification based on a comparison
between domain- and sequence-level analyses. Reaction enumer-
ation and condensation at the domain level produce a
description of the expected resting macrostates and resting
macrostate reactions. We can verify the sequence-level system
by checking that the enumerated domain-level resting macro-
states adopt expected conformations and the condensed
reactions occur at appropriate rates. In addition, other

unenumerated complexes and reactions must not occur at
levels significant enough to affect system function.

The subsections that follow describe this approach in detail.
Section 3.1 provides the definitions of the DNA system com-
ponents used by KinDA. Section 3.2 lists the particular
software tools used by KinDA and the relevant features they
provide. The remainder of §3 describes in detail how KinDA
relates domain- and sequence-level system constructs and
how relevant system parameters are estimated via stochastic
simulation.

3.1. Basic definitions
We consider DNA systems at three levels of granularity: the
sequence level, where each DNA component is specified with
particular nucleotide sequences; the domain level, where each
DNA component is specified with domains and without regard
to nucleotide sequence and the strand level, where each DNA
component is considered without regard to secondary structure.

Definition 3.1. At the domain and strand levels, a domain is
defined by an identifier and a positive integer specifying the
domain length in nucleotides. At the sequence level, a domain
is defined by its identifier and a sequence of bases (b1, b2, . . .,
bn), n � 1, where each bi [ fA, T, C, Gg. The sequence of a
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Figure 2. Overview of domain-level system analysis via reaction enumeration. (a) An entropy-driven catalytic circuit described by Zhang et al. [7], showing the full

set of enumerated reactions. Note that dissociation reactions that involve breaking a bound short domain are reversible, while dissociation reactions will be treated as

irreversible if completing the strand displacement leaves no exposed toeholds for the reverse reaction. (b) Example of a resting macrostate consisting of a complex

with three secondary structures that can freely interconvert. Throughout this paper, we use rounded rectangles to indicate resting macrostates of one or more

complex conformations. (c) Some systems contain distinct domain-level resting macrostates equivalent to the same strand-level complex, but no fast pathways

for interconversion. KinDA is not well-suited to analysing these systems. (d) Reaction condensation describes system behaviour through reactions between resting

macrostates, rather than specific conformations. This change incorporates the separation of timescales assumption, and almost always simplifies the reaction network

significantly. Note that the final reaction producing INPUT, OUTPUT and WASTE is shown as irreversible because timescale separation precludes the possibility of

trimolecular reactions.
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domain’s complement is determined by Watson–Crick base
pairing.

Definition 3.2. A strand is defined by an identifier and a sequence
of domains (d1, d2, . . ., dn), n � 1, ordered from 50 to 30 ends.4

Definition 3.3. A secondary structure or conformation describes
how a sequence of connected DNA strands are bound to each
other. At the domain level, each domain is either completely
unbound or completely bound to exactly one complementary
domain. At the sequence level, each nucleotide is either unbound
or bound to a single complementary nucleotide (i.e. Watson–
Crick complement or G-T wobble pair).5 At the strand level,
secondary structure is not considered.

Definition 3.4. At both the domain and sequence levels, a complex

is defined by an identifier, a sequence of strands (s1, s2, . . ., sn),
n � 1, and a secondary structure. At the strand level, a complex
is defined by its identifier and strands but lacks a particular
secondary structure.6

Definition 3.5. A reaction is defined by two multisets of
complexes, written as

A1 þ A2 þ � � �!
k
P1 þ P2 þ � � �

or, simply,

A!
k
P

for reactant multiset A ¼ {jA1, A2, . . . j}, product multiset
P ¼ {jP1, P2, . . . j}, and rate constant k.

The remainder of this section describes features at the
domain and strand levels. Because reaction enumeration is rarely
feasible at the sequence level, these features do not apply to
sequence-level systems.

At the domain level, reaction enumeration produces reactions
of the following types: two complementary unbound domains
bind to each other; two bound domains unbind from each
other;7 one or more unbound domains may each displace an
identical nearby bound domain via three-way branch migration,
or pairs of bound domains may exchange partners with nearby
identical pairs via four-way branch migration.

Definition 3.6. The detailed reactions of a domain-level system are
all reactions predicted by reaction enumeration. These may
involve complexes not explicitly specified in the system descrip-
tion, if these complexes were predicted by reaction enumeration.
Bimolecular reactions are classified as slow and unimolecular
reactions may be classified by the enumerator as either fast or
slow. The strand-level detailed reactions are found by converting
all reactions to strand-level equivalents and removing those
whose reactants and products are equal.

Definition 3.7. A domain-level resting macrostate or resting set is a
set of domain-level complexes strongly connected by fast reac-
tions with no outgoing fast reactions. A resting complex refers to
any complex within some restingmacrostate. Any other complex is
termed a transient complex. At the strand level, a resting macrostate
contains only a single strand-level complex.

A resting macrostate will always be stable on the timescale of
the fast reactions, with each constituent resting complex having
an equilibrium relative concentration. By contrast, transient com-
plexes have at least one outgoing fast reaction that leads toward a
resting macrostate, and thus they will vanish quickly via one of
these reactions. Note that all complexes within a resting

macrostate will have the same set of strands, in the same order,
so it is sometimes instructive to refer to a resting macrostate as
a set of secondary structures over the same strands. In fact, in
cases of interest for analysis by KinDA, there is at most one
resting macrostate per strand-level complex.

Definition 3.8. The reaction subnetwork for multiset of resting
macrostates A ¼ {jA1, A2, . . . j} is the subset of detailed reactions
consisting of the slow reactions possible with the members of A
and the fast reactions possible after any such slow reaction or
subsequent fast reactions. Throughout this paper, A contains
one or two resting macrostates.

Definition 3.9. The condensed reactions or resting macrostate reac-

tions are the reactions produced by reaction condensation (see
§2.2 and [38]). Each condensed reaction has reactant and product
multisets consisting of resting macrostates rather than complexes.

3.2. Software dependencies
Our methods rely on three types of analyses: reaction enumer-
ation at the domain level and thermodynamic and kinetic
analyses at the sequence level. Although KinDA currently
relies on the following three packages, it is reasonable to expect
that our framework could be adapted to use any tool satisfying
a few basic assumptions.

For domain-level reaction enumeration, we use the Pepper-
corn enumerator [38] because it considers a general, widely
used class of DNA complexes—arbitrary, non-pseudoknotted,
multistranded complexes—and it provides both a detailed and
a condensed reaction network. We anticipate that the KinDA
framework could be used with other enumerators so long as
the detailed reactions consist of slow bimolecular reactions and
fast and slow unimolecular reactions.

For sequence-level thermodynamic analysis, we use the
Nucleic Acids Package (NUPACK) [45]. NUPACK allows the
sampling of arbitrary unpseudoknotted secondary structures
from the equilibrium Boltzmann distribution of conformations
possible for a given strand-level complex. This capability is
used to estimate the probability of a resting macrostate being
well formed.

For sequence-level kinetic analysis, we use Multistrand [48]
to produce stochastic elementary step simulations of reaction
trajectories between DNA complexes. Multistrand provides a
special simulation mode called ‘First Step Mode’ (FSM). FSM
simulations break the reaction trajectory into two parts: the
initial binding step and the folding trajectory that follows,
with any particular simulation containing separate data on
both steps. The initial binding step occurs between a pair of
unbound nucleotides that have the potential to form a base
pair, one from each of the initial molecules, whose states are
Boltzmann sampled. The rate of this step is estimated from
the number of different such pairs that could form in the initial
state. The subsequent folding trajectory step is simulated until
any of a set of predetermined stop states has been reached;
stop conditions are specified as a set of sequence-level com-
plexes that must be present. This mode is well suited to
simulations at low concentrations, when separate complexes
will adopt their equilibrium Boltzmann distributions prior to
interacting with each other.

3.3. Relating domain-level and sequence-level resting

macrostates and secondary structure
Sequence-level interactions may not have direct counterparts
in the domain-level system. For instance, sequence-level
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conformations may differ from domain-level conformations in
ways that may or may not change the behaviour of the complex
(figure 3a). Similarly, sequence-level and domain-level reaction
trajectories may differ even when no undesired behaviour
occurs. For instance, as in figure 3b, simultaneous branch
migration on different parts of a complex will produce
sequence-level trajectories with intermediates quite different
from domain-level predictions. In this and the following sec-
tion, we develop a precise relationship between secondary
structures and reaction pathways at the sequence and domain
levels.

To determine whether a sequence-level complex belongs to a
domain-level resting macrostate, we first assume that no two dis-
tinct domain-level resting macrostates share the same ordered list
of strands up to circular permutation. At the sequence level, this
is equivalent to assuming that there are no significant kinetic bar-
riers between different low-energy conformations of the
corresponding strand-level complex. This assumption implies
that the sequence-level conformations observed on a complex
composed of these strands will follow the equilibrium Boltz-
mann distribution. Although many DNA systems satisfy this
assumption, those that do not (e.g. figure 2c) should be analysed
by this framework with caution.

Of particular interest is the probability that a sequence-level
complex will adopt a conformation similar to expected domain-
level complexes. To make this notion precise, we associate each
domain-level conformation with a set of functionally similar
sequence-level conformations. The following definitions are
motivated by the fact that the domains in a complex represent
the smallest functional units of the molecule. If all domains in
a sequence-level secondary structure are bound in approxi-
mately the same manner as a domain-level secondary
structure, then it is reasonable to expect that a sequence-level
complex with that conformation will function similar to the
domain-level complex.

Definition 3.10. A sequence-level secondary structure Ts is a
p-approximation of domain-level secondary structure Td if they
share the same ordered strands (up to circular permutation)
and, for every domain in each strand, the fraction of nucleotides
in Ts that are unbound or bound to the same targets as in Td is
greater than or equal to p, which is a fraction between 0 and 1.

Definition 3.11. A sequence-level secondary structure Ts is
p-spurious if it is not a p-approximation for any domain-level
secondary structure in the domain-level system specification.
Otherwise, we say Ts is well-formed when the value of p is clear
from context.

Figure 4a,b shows the application of definition 3.10 to par-
ticular sequence-level secondary structures. Note that the value
of p is specific to the particular system and application, and the
user is responsible for choosing a value of p that accounts for
the sensitivity of the resting macrostate to non-ideal domain be-
haviour. Using p . 0.5 is recommended, as in that case a given
sequence-level complex can be a p-approximation of at most
one domain-level resting macrostate. As a general rule, a reason-
able p may be 0.51 to ensure that three-way branch migration
domains, which will often exhibit partial migration, are not
classified as spurious. If leak reactions are of particular concern,
a higher p may be necessary to recognize the opening of single
base pairs in a double-stranded region.

Figure 4c demonstrates the effect of p on the probability that a
sampled secondary structure will not be p-spurious for the resting
macrostates in the entropy-driven catalyst system (figure 2d).
Increases in p lower the probability of being well formed because
higher p represents a more restrictive condition on approximating
a domain-level conformation. This system, which lacks active
branch migration domains in the resting macrostates, retains
reasonably well-formed resting macrostates for p � 0.77. The
process of computing these probabilities is described in §3.5.1.

(a)

(b)

12

1* 1*2*

1
2

domain level sequence level

54
4

3

5*

21

2

54

1 2

43

5*

2

54
4

3

5*

2

43

5*

21

2

domain level

sequence level

54
4

3

5*

21

2

54

1 2

43

5*

253

5*

1

Figure 3. Sequence-level secondary structures and reaction pathways do not directly correspond to domain-level secondary structures. Characterizing the domain-

level constructs based on sequence-level data requires mapping between the two. (a) Sequence-level conformations different from a domain-level conformation may

or may not be functionally equivalent. (b) In the entropy-driven catalyst described by Zhang et al. [7], this domain-level reaction pathway assumes that the branch

migration reactions on the left (domain 2) and the right (domain 4) occur sequentially, with one completing before the other begins. Simulating these reactants at

the sequence level commonly produces trajectories in which both domains undergo branch migration simultaneously, so many of these trajectories do not corre-

spond to any specific domain-level reaction pathway. This motivates our approach of only considering strand-level complexes during stochastic simulation when

identifying spurious trajectories.
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3.4. Relating domain-level and sequence-level reaction

pathways and reaction rates
When designing and analysing sequence-level reaction path-
ways, we consider the following augmented model for the
interactions between one or two resting macrostates, building
on the approach developed in [48]:

Definition 3.12. The first-step model for multiset of resting
macrostates A is the set of all reaction pairs Ri of the form

Ri : A�!
ki1
Ai�!

ki2
Pi,

where each Pi ¼ {jPi
1, P

i
2, . . . j} is the ith multiset of possible final

product resting macrostates resulting from a domain-level reac-
tion pathway beginning with A. The reaction pair with P0 ¼ A

is termed the unproductive reaction and is always included if A
has two or more reactants.8 Reactions with Pi, i ¼ 1, 2, . . . , are
termed productive reactions. In addition, a spurious reaction Rs is
included of the form

Rs : A�!
ks1

As �!
ks2

Ps:

For brevity, we often refer to reaction pairs in shorthand as a
single reaction9

R : A ! P:

When estimating rate constants or performing standard mass-
action chemical kinetics simulations, the two steps are considered
separately.

The first-step model separates each reaction into two steps.
For bimolecular reactions, these can be intuitively understood
as modelling an initial bimolecular interaction followed by a
unimolecular reconfiguration, which allows both the reaction

rate’s concentration dependence and the reaction’s temporal
extent to be explicitly modelled. For unimolecular reactions, the
ki1 and ki2 determine the rate of initiating the reaction and how
long it takes to complete, respectively. The intermediates Ai rep-
resent a coarse-graining of trajectories through intermediate
complexes based on the final product set Pi they are destined
to reach. They do not refer to particular complexes or macrostates
themselves. See [48] for a discussion of this treatment of Ai and
its implications.

When analysing the reactions of the first-step model of A, we
consider simulated trajectories beginning with a single copy of
each element of A. While any simulated trajectory will, given
enough time, reach one of the expected product states Pi, it is
important to identify when a simulated trajectory deviates sig-
nificantly from the expected enumerated reaction pathways.
Such trajectories should correspond to the spurious reaction Rs

rather than any of the Ri. To understand the difficulty of deter-
mining this deviation, consider the reaction in the Zhang et al.

system [7] shown in figure 3b. Existing domain-level reaction
enumerators will predict the branch migration of each domain
to happen sequentially, with the branch migration completing
on one side before beginning on the other. However, at the
sequence level, these branch migrations usually happen simul-
taneously, so that a well-behaved simulated trajectory will not
directly match any domain-level reaction pathways to the final
state. For this reason, we instead use the strand-level reaction
subnetwork, which provides a level of detail intermediate
between the domain-level subnetwork and the condensed reac-
tions.10 Figure 5a,b shows a domain-level reaction subnetwork
and the corresponding strand-level reaction subnetwork.

Definition 3.13. At the sequence level, a reaction trajectory
beginning with multiset of resting macrostates A is spurious if
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OUTPUT (OB)
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WASTE (W)
0
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Figure 4. Correspondence between sequence-level and domain-level secondary structure. (a) Examples of sequence-level conformations that are p-approximations of

a domain-level conformation. This example uses a value of p ¼ 0.8 so that each instance of domain 2, which is eight nucleotides long, may have at most one

nucleotide incorrectly bound. Note that the toehold domain 1 has only three nucleotides, so it may not have any nucleotides incorrectly bound with this value of p.

(b) To determine whether a secondary structure is a p-approximation, we calculate the fraction of correctly bound nucleotides (red text) in each domain. To be

considered a p-approximation, this fraction must be greater than or equal to p for every domain. In this case, the sampled structure would be a p-approximation for

any p � 2
3
. (c) Effect of p on the probability that a sampled sequence-level conformation will be well formed, for all resting macrostates in the entropy-driven

catalyst system (figure 2d ) for the experimental DNA sequences, at a temperature of 258C and [Naþ] ¼ 1 M (cf. figure 7).
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it forms a multiset of strand-level complexes not possible by
following reactions in the strand-level reaction subnetwork
before reaching one of the non-spurious product multisets Pi.
Otherwise, the trajectory is compatible.

Definition 3.13 classifies a reaction trajectory based on each
observed strand-level ‘state of the simulation box’ (i.e. the multi-
set of strand-level complexes in a reaction trajectory at a given
time point). Observing a strand-level state not reachable via the
strand-level reaction subnetwork indicates that an unexpected
dissociation event has occurred.11 We consider these trajectories
spurious even if the trajectory were to later rejoin an expected
reaction pathway, because they do not correspond to the behav-
iour predicted at the domain level. For this reason, these
trajectories are undesirable from the perspective of confirming
that the system’s behaviour matches domain-level predictions.

Each stochastic simulation halts as soon as the trajectory
can be classified as either spurious or compatible, as identified
by the methods discussed below. The complexes in the initial
and non-spurious final states of compatible trajectories have a
direct correspondence to resting macrostates in the domain-
level model. The following simulation modes allow the user to
adjust how closely each sequence-level complex must resemble
its corresponding resting macrostate.

Definition 3.14. In ordered-complex mode, simulations use only
the strand-level reactants and products to determine initial
and final states of the reaction trajectory. Initial states are
sampled from the Boltzmann distribution of secondary struc-
tures possible for the given strand-level reactant and the
simulation halts as soon as the strand-level elements of some
Pi are produced. In count-by-domain mode, the initial states are
sampled from the Boltzmann distribution of conformations for
the same strand-level complex, with the condition that the con-
formation is a p-approximation of one of the domain-level
conformations. Simulations halt when the product secondary
structures satisfy this same condition. In count-by-complex

mode, the initial and final states are similarly restricted but
with the fractional defect computed over the entire complex,
rather than for each domain.

In most cases, ordered-complex mode is sufficient to
achieve good rate estimates. The additional modes are slower
to simulate because they require more involved checking of
the system state at every time step, so are only recommended
when necessary. In particular, count-by-complex mode is pro-
vided as a less accurate version of count-by-domain mode to
reduce compute times. Note that the initial and final states of
a trajectory may be configured with different modes. The

(a)

(c) (d)

(b)

S1:S2:S4 S3

S1:S2:S3:S4

S1:S3:S4 S2
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S1:S2 + S3:S4

S2:S3 + S4:S1

S3

S1:S2:S3:S4

S1:S3:S4 S2

S1:S2:S4

S1:S3:S2:S4

S1:S2:S4:S3

S1 + S2:S4:S3

S4 + S1:S3:S2

S2 + S1:S4:S3

S1:S3 + S2:S4
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S2:S3 + S4:S1
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Figure 5. Automatic determination of stop states between two resting macrostates for the entropy-driven catalyst described by Zhang et al. [7]. (a) The domain-

level reaction subnetwork between resting macrostates S and C. Note that these resting macrostates each have only one conformation, and that the final reaction is

shown as irreversible because the reverse reaction is not part of this reaction subnetwork. (b) Strand-level reaction subnetwork between resting macrostates S and C.

The strands are labelled S1, S2, S3 and S4. Observe that the two intermediate domain-level complexes are conflated into a single strand-level complex because these

complexes differ only in secondary structure and not in strand order. (c) The spurious stop states are automatically determined by accounting for improper dis-

sociation after some bimolecular binding step. For every predicted strand-level state of the simulation box, each strand-level complex after the initial binding event is

considered as a candidate (grey) for improper dissociation. A dissociation event partitions the ordered strands of a complex into two separate lists, and all such

partitions that lead to strand-level states not reachable via enumerated strand-level pathways are included as spurious stop states (red). Note that improper binding

producing an unenumerated strand-level complex is not considered spurious unless the complex dissociates into an unenumerated form. If the complex dissociates

into the original reactants, this is instead classified as unproductive. For unimolecular spurious stop states, no initial binding step is considered, and all dissociation

events producing unexpected strand-level simulation states are included as spurious stop states. (d) Final list of compatible and spurious stop states.
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implications of these three modes are explored in the Groves
et al. case study (§4.4).

To identify spurious trajectories, KinDA automatically deter-
mines a minimal set of strand-level states as ‘stop states’ for the
stochastic simulator. Figure 5c,d shows the process of determin-
ing the stop states for a selected reaction from the Zhang et al.

system [7]. In each spurious stop state, the complexes have no
relationship to domain-level resting macrostates, so the modes
in definition 3.14 do not apply. These halting conditions
effectively always apply ordered-complex mode.

Note that although the spurious first-step model product Ps

conflates all possible product multisets formed by a spurious tra-
jectory, the particular unexpected strand-level complexes
formed, as well as separate k1 and k2 rate constants for their for-
mation, are available to the user to help debug the reason for
their occurrence, for instance using domain-level-agnostic tools
such as NUPACK or Multistrand. Because these complexes lack
a domain-level description of their behaviour, KinDA is not
well equipped to characterize their properties directly.

The following definition describes the correspondence
between simulated reaction trajectories beginning with A and
the reactions of the first-step model forA. Note that each trajectory
corresponds to at most one first-step model reaction.12

Definition 3.15. Consider non-spurious reaction Ri in the first-
step model for A, with final products Pi. A compatible reaction
trajectory corresponds to Ri if the trajectory begins with A and
ends with Pi. A spurious reaction trajectory corresponds to Rs,
the spurious reaction.

A complete characterization of the first-step model reactions
includes estimates for the rate constants ki1 and ki2 (see §3.5). The
full set of productive, unproductive, and spurious reactions and
their rate constants, which we may call the first-step CRN, are
intended to be suitable for simulation by any off-the-shelf CRN
simulator (e.g. [53]; in this paper, we use the simulator provided
with the Nuskell compiler [42]) according to standard mass-
action chemical kinetics using either discrete stochastic (Gillespie,
continuous-time Markov chain) semantics [54] or continuous
deterministic (ordinary differential equation, ODE) semantics
[55]. In this way, simulations of the first-step CRN allow us to
examine the predicted behaviour of the system when more
than one copy of each species may be present, or when given
concentrations of each species are specified. Note that although
every reaction in the first-step CRN has a non-zero probability
of occurring as a Multistrand simulation trajectory, the prob-
ability may be extraordinarily small—so when an insufficient
number of stochastic simulations in Multistrand are performed,
no such trajectories may be observed. In this case, KinDA’s
rate constant estimate are informed only by the number of
attempted trials and may be extreme overestimates; thus, reac-
tions with no observed corresponding trajectories may (and
perhaps should) be omitted from simulations.

3.5. Estimating system parameters
This section describes how, after sequence assignment, the par-
ameters of the sequence-level system can be estimated from
simulation data to determine if the system behaviour will
match domain-level predictions. We estimate two features of
the sequence-level system:

(1) For each domain-level resting macrostate, the conformation

probabilities (i.e. the likelihood that a corresponding
sequence-level structure will adopt a p-approximation of
each domain-level conformation, for a user-provided value
of p).

(2) For each first-step model reaction, the reaction rates k1 and k2
(using no extra parameters for ordered-complex mode, but
using a user-provided value p0 for count-by-domain and
count-by-complex modes).

For each parameter, KinDA’s user interface allows the user to
specify a desired precision of the result, and sampling or simu-
lations are performed as needed to achieve that result; as a
consequence, KinDA requires useable error estimates even in
the early stages before any successful cases have been observed,
and when few have been observed.

3.5.1. Estimating conformation probabilities
Recall our assumption that the sequence-level conformations
adopted by the strands in a resting macrostate follow the equili-
brium Boltzmann distribution (§3.3). Given a resting macrostate
and its predicted domain-level conformations, we apply this
assumption to estimate the probability of a sequence-level sec-
ondary structure being a p-approximation of each predicted
conformation and of being spurious.

Using dynamic programming, the probability of adopting
any sequence-level conformation satisfying certain constraints
can be computed explicitly in O(n3) time, where these con-
straints take the form of particular base pairs being bound
or unbound, while other base pairs are allowed to vary [56].
However, the definition of a p-approximation describes a
different type of constraint not covered by this algorithm.
Instead, we estimate conformation probabilities by empiri-
cally sampling sequence-level secondary structures from the
Boltzmann distribution using NUPACK [45]. Each secondary
structure in a set of samples can be classified as p-spurious or
a p-approximation of at least one of the expected domain-
level secondary structures. Note that if p � 0.5, a particular
sampled sequence-level secondary structure may match mul-
tiple domain-level secondary structures, so we will always
use p . 0.5.

Let N denote the total number of samples collected and Ni

denote the number of samples that are a p-approximation of
the ith domain-level conformation. pi is the true probability of
the ith conformation, and p̂i is our estimate of this probability.
We use i ¼ s to refer to the corresponding values for the spurious
conformation. Note that for a given N and i, Ni is a binomial
random variable Ni ≏ binomial(N, pi).

3.5.1.1. Estimation of pi
A naive approach to estimating pi might be to calculate the maxi-
mum-likelihood estimate (MLE) for the probability; from basic
statistics, this estimate is p̂MLE

i ¼ Ni=N. However, this approxi-
mation may be misleading: for example, when Ni ¼ 0 we get
p̂MLE
i ¼ 0. That is, the conformation probability is estimated

equal to zero, despite the fact that the secondary structure may
clearly be possible. As we will show, this situation also makes
it difficult to determine the error on the estimate.

Instead, we use the Bayesian estimate of the expectation of
the conformation probability given N and Ni. Using a uniform
prior distribution on pi, the expectation is exactly

p̂i ¼ E[pijdata] ¼
Ni þ 1

N þ 2
: (3:1)

3.5.1.2. Error estimation for pi
Error estimation using maximum-likelihood methods may also
be misleading. The maximum-likelihood estimate is

ŝMLE
pi

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂MLE
i (1� p̂MLE

i )

N

s

:
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When Ni ¼ 0 or 1, ŝMLE
pi

¼ 0, which is clearly inaccurate. Without
a more suitable error estimate, we cannot judge our confidence in
the result or determine whether additional samples should be
drawn.

We instead measure the spread in the possible values of pi
with the standard deviation of its posterior distribution given
N and Ni, calculated using Bayesian inference

ŝ pi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂i(1� p̂i)

N þ 3

r

: (3:2)

Derivations for equations (3.1) and (3.2) can be found in
electronic supplementary material, appendices A.1 and A.2.

3.5.2. Estimating reaction rates (bimolecular reactions)
In the paragraphs that follow, it is helpful to note that a given
Multistrand simulated trajectory is not representative of a trajec-
tory sampled from all collisions that would occur in a test tube.
Multistrand FSM trajectories are reactions between single copies
of A and B with initial states of A and B chosen from the Boltz-
mann distribution of possible conformations of each macrostate,
with the first step of the trajectory being a bimolecular interaction
forming a base pair between A and B. The distribution over tra-
jectories sampled this way is referred to in the rest of this
discussion as the FSM distribution. By contrast, a trajectory
sampled from the distribution of all test-tube collisions is consist-
ent with the chemical master equation (CME), and will be
weighted by an associated rate constant. This distribution is
referred to as the CME distribution. Expectations taken over
one or the other distribution may differ; where ambiguous, we
will specify which of these distributions we are using.

Consider the interactions between any two resting macro-
states A and B. Each simulated reaction trajectory between A

and B corresponds to a single reaction in the first-step model,
except when the sampled conformations do not allow an
immediate bimolecular step. Multistrand reports two values for
each trajectory that are of use to us: kcoll, the rate constant for
the bimolecular collision between the sampled conformations
of A and of B; and t2, the time taken to complete the unimolecu-
lar step [48]. Here, we generalize methods from [48] to combine
these observations into a single estimate of ki1 and ki2 for each
reaction

Ri : Aþ B�!
ki1

ABi �!
ki2

Pi:

For the following discussion, N denotes the total number of
simulated FSM trajectories between A and B, and Ni denotes
the number of these trajectories corresponding to reaction Ri.
The N trajectories are indexed with a variable n ¼ 1, . . ., N.
Each trajectory is characterized by the binary values Sni , which
is 1 if and only if the nth trajectory corresponds to reaction Ri,
and kncoll and tn2 , which are the values reported by Multistrand
for the nth trajectory. Trajectories with no initial step have all
Sni ¼ 0.

3.5.2.1. Estimation of k1
For reaction Ri, we estimate ki1 using a Bayesian approach. ki1 is
defined as the rate constant for collisions between A and B in a
test tube that ultimately lead to products Pi. This is equivalent
to the following:

ki1 ¼ pikcoll,i ¼ E[Sni ]�kcoll,i ¼ E[Sni k
n
coll], (3:3)

where pi ¼ E[Sni ] is the probability that a trajectory sampled from
the FSM distribution will have Sni ¼ 1 and kcoll,i is the expectation
of kncoll taken over only these trajectories with Sni ¼ 1.

Using the expectation of ki1 given the data as our estimate, we
have the following formula for k̂i1:

k̂i1 ¼ E[ki1jdata] ¼

P

Sn
i
¼1 k

n
coll

N þ 2
, (3:4)

where to simplify the calculation we make the assumption
that pi and kcoll,i are independent random variables, with pi
having a uniform prior on [0, 1] and kcoll,i having prior
P(kcoll,i)/ 1=(kcoll,i)

3.

3.5.2.2. Error estimation for k1
We estimate the error on ki1 with the following equation for the
standard deviation of the posterior distribution of ki1 given the
observed trajectories:

ŝki1
¼ k̂i1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N �Ni þ 1

Ni(N þ 3)

s

: (3:5)

3.5.2.3. Estimation of k2
When estimating ki2 for reaction Ri, we make the simplifying
assumption that the unimolecular step times tn2 for reaction tra-
jectories corresponding to Ri are drawn from a distribution
with mean 1=ki2, where this mean is taken over trajectories fol-
lowing the CME distribution. We use the following estimator
for ki2:

k̂i2 ¼

P

Sn
i
¼1 k

n
coll

P

Sn
i
¼1 k

n
collt

n
2

: (3:6)

3.5.2.4. Error estimation for k2
The standard deviation of the expected unimolecular reaction
time t2,i is calculated using equation (3.6), above, which rep-
resents a weighted sum of the simulated reaction times tn2 over
successful trajectories. Using the inversely proportional relation-
ship between ki2 and the t2,i, we can derive an estimate for the
standard deviation of the estimate for ki2 to be

ŝki2
¼ (k̂i2)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Sn
i
¼1 k

n
coll tn2 �

1

k̂i2

 !2

(Ni,eff � 1)
P

Sn
i
¼1 k

n
coll

v

u

u

u

u

u

t , (3:7)

where

Ni,eff ¼

P

Sn
i
¼1 k

n
coll

� �2

P

Sn
i
¼1 (k

n
coll)

2 :

Derivations for equations (3.4) and (3.5) are found in elec-
tronic supplementary material, appendices A.3 and A.4,
respectively. Equation (3.6) is generalized from the derivation
in [48] for reactants with a single productive reaction.
Equation (3.7) is derived in electronic supplementary material,
appendix A.5.

3.5.3. Estimating reaction rates (unimolecular reactions)
When slow unimolecular reactions are enumerated at the domain
level, the first-step model treats such reactions as two-step reac-
tion pathways with k1 and k2. For these reactions, KinDA uses
k1 to represent the probability of the reactant following a particu-
lar pathway and k2 to determine the time taken along the
pathway. Multistrand simulations for unimolecular first-step
model reactions do not use FSM. The following paragraphs
consider first-step model reaction Ri for resting macrostate
A. Trajectories are indexed by n ¼ 1, . . ., N and each has an
associated trajectory time tn2 .
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3.5.3.1. Estimation of k1
When the first-step CRN is treated as a Markov chain, the
probability that resting macrostate A will produce Pi is

PA(i) ¼
ki1
P

j k
j
1

where j [ fs, 1, . . . g. For ki1 � ki2, the rate constant for the overall
reaction A ! Pi is simply ki2. KinDA estimates ki1 by attempting
to enforce these two constraints. PA(i) is estimated with equation
(3.1), where Ni is the number of simulated trajectories
corresponding to Ri.

ki1 ¼ kfastP̂A(i),

where kfast ¼ kscale �maxi {ki2} enforces that ki1 � ki2 while main-
taining the relative values of all k1 in the first-step model for A.
Any kscale may be used as long as it is large enough that the
time taken to generate Pi is dominated by the second step.13

3.5.3.2. Error estimation for k1
Because the scale of ki1 is not meaningful, we consider only the
error in P̂A(i), and report

ŝki1
¼ kfastŝPA(i),

with kfast defined as before and ŝPA(i) defined as in equation (3.2).

3.5.3.3. Estimation of k2
Because we guarantee that ki1 � ki2, the time taken to produce Pi

is determined only by ki2. The average time to completion is
inversely proportional to the rate constant, so we have

k̂i2 ¼
1

t2,i

where t2,i is the mean reaction time for reaction trajectories
corresponding to Ri.

3.5.3.4. Error estimation for k2
Following identical reasoning as for error estimation of k2 in the
bimolecular case, we have

ŝki
2
¼ (k̂i2)

2 � ŝt2,i ¼ (k̂i2)
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Sn
i
¼1 (t

n
2 � 1=k̂i2)

2

Ni(Ni � 1)

v

u

u

t

,

where Sni ¼ 1 if and only if the nth trajectory corresponds to Ri.

3.6. Usage and interpretation of the analysis framework
The framework described in this paper can be used to judge the
sequences for a single component of a DNA circuit or for the cir-
cuit as a whole. For instance, if the interactions between a
particular pair of resting macrostates has been previously
found to be problematic, KinDA can analyse just these inter-
actions in isolation of the rest of the system with multiple
potential sequences to determine which sequences are most
probable to produce a functioning system. Once sequences are
chosen, the sequence-level system can be verified in its complete
form by estimating reaction rates for each reaction in the model.

Given reaction rate estimates, the behaviour of the system can
be judged by simulating standard mass-action chemical kinetics,
i.e. constructing mass-action differential equations from the
first-step model reactions and applying standard numerical ODE
solvers. Alternatively, KinDA computes scoring metrics for certain
components of the system, as well as for the system overall.

For each resting macrostate in a system, KinDA can compute
a bound on the temporary depletion of this resting macrostate due

to time potentially spent undergoing unproductive reactions.
This metric is computed at three levels of detail. Each metric
assumes a user-provided maximum concentration cA for every
resting macrostate A and provides an upper bound on the tem-
porary depletion assuming concentrations are fixed at this
level. For two resting macrostates A and B, we bound the tempor-
ary depletion A due to the unproductive reaction between A and
B with aAB

aAB ¼
KABcB

1þ
P

A0 KAA0cA0

, (3:8)

where KAB ¼ k01=k
0
2 is the association constant for the unproduc-

tive reaction between A and B, based on the rate constant
estimates from Multistrand FSM simulations. We similarly
bound the total temporary depletion of A due to all unproductive
reactions involving A with aA

aA ¼

P

A0 KAA0cA0

1þ
P

A0 KAA0cA0

: (3:9)

The system-level unproductive reaction score a is the maximum
temporary depletion of any A

a ¼ max
A

{aA}: (3:10)

Note that these equations implicitly assume that unproductive
reactions are on a faster timescale than productive reactions.
While systems can be constructed for which this is not true,
this assumption generally holds in practice because unproduc-
tive reactions tend to consist of weak binding of mismatched
sequences and temporary binding by short toeholds, whereas
productive reactions involve additional branch migration steps.
Because these equations compute the depletion amount due to
a single set of maximum concentrations for each reactant, they
provide an upper bound on the level of depletion. While true
depletion levels will vary from the reported bounds, the total
depletion levels should remain below these bounds. In addition,
because these estimates are sensitive to the supplied maximum
concentrations, circuits for which maximum concentrations
cannot be found should not be judged by these scores.

KinDA also computes the permanent depletion of a resting
macrostate due to spurious reactions. Because the behaviour of
spurious products is beyond the scope of the domain-level
model and therefore considered unknown, we assume a resting
macrostate undergoing a spurious reaction becomes perma-
nently unusable. The fractional depletion rate of a resting
macrostate A due to a spurious reaction Rs with resting macro-
state B is bounded by cBk

s
1. The fractional depletion rate of

resting macrostate A due to all spurious reactions is bounded
(with some abuse of notation) by

bA ¼
X

A0

cA0ks1, (3:11)

where each ks1 is the bimolecular rate constant of the spurious
reaction between A and the relevant A0. The system-level spur-
ious reaction score is the maximum fractional depletion rate of
any resting macrostate A, or

b ¼ max
A

{bA}: (3:12)

If the user has desired parameter ranges for each productive reac-
tion rate in the system, these can also be used to manually
determine if the sequence-level system is well behaved. Because
this involves additional knowledge about the expected system
behaviour, KinDA does not automatically score this aspect of
the system.
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4. Results

4.1. Case study: entropy-driven catalyst
In this case study, we demonstrate the usage of KinDA to

gain broad information about the behaviour of an entire

DNA strand-displacement circuit. We perform a full analysis

of the entropy-driven catalyst [7] (figure 2d ), including every

resting macrostate and both productive and unproductive

reactions. Results are shown in figure 6.

Figure 6a shows the behaviour of each resting macrostate

and each productive reaction. The rate constants for each of

the three productive reactions indicate that the circuit is

likely to behave as designed. The reversible first step of the

catalytic cycle (C þ S! I þ SB) is strongly biased in the

forward direction because the k1 constants differ by two

orders of magnitude. The second step of the catalystic cycle

(I þ F! C þ OB þ W) is also biased in the forward direction,

both because the k1 for the final entropy-driven reaction is

higher than that of the reverse of the first step and because a

high initial F concentration (1.3 x)14 is used. The k2 rate for

this final step is the slowest of the three reactions; this is

likely because the spontaneous dissociation of 6-nt toehold 5

is relatively slow.15 These sequences produce well-behaved

resting macrostates, each with high probability (more than

70%) of adopting an enumerated domain-level conformation

(for p-approximations with p ¼ 0.7) and with low temporary
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which the concentration of C determines the rate of OB production but not its final level. (e) Simulated reaction times for the first step of the catalytic cycle at 258C

and 608C. In this case, reaction times increasingly violate an exponential distribution at higher temperatures. Note that standard mass-action chemical kinetics

assumes exponentially distributed reaction times.
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depletion (less than 1.5%). While this behaviour holds at low

concentrations of x¼ 10 nM (figure 6b), at higher concentrations

of x¼ 250 nM the temporary depletion reaches almost 30% for

the catalyst C (figure 6c), which would begin to affect overall

kinetics. This depletion is due to toehold occlusion by W (e.g.

[42]), whereby the shared toehold between these two complexes

effectively sequesters C when bound to W.

Figure 6d shows mass-action simulations of the full

system based on the KinDA-derived rate constants (see elec-

tronic supplementary material, table S2 for a full list). These

simulations demonstrate the catalytic circuit behaviour

observed by Zhang et al. [7], in which any amount of catalyst

C produces output OB with rate dependent on [C]. Rate

dependence on temperature of a single reaction is shown in

figure 6e, which shows that at high temperatures the reaction

times increasingly violate an exponential distribution.

This indicates that branch migration, a non-exponentially

distributed random walk process, becomes a more dominant

rate-determining step at high temperatures.Note that although

the qualitative circuit behaviour is correct, KinDA’s predicted

reaction rates differ from those observed experimentally by

roughly a factor of 4–6, as seen by circuit half-completion

times (electronic supplementary material, table S3). The

accuracy of the particular rates is highly dependent on

Multistrand’s kinetic model, which currently does not account

for important factors such as base-pair stacking at nicks. Future

improvements to Multistrand [57] will produce more accurate

timescale estimates by KinDA.

Despite the limitations of the current Multistrand kinetic

model, KinDA can provide important semi-quantitative

insights about DNA circuit performance under conditions

that were not yet experimentally investigated. Figure 7

shows an analysis of the Zhang et al. entropy-driven catalyst

[7] at different temperatures and different concentrations, as

well as comparison to systems with modified domain

sequences. By performing Multistrand simulations at differ-

ent temperatures, we can observe trends in system

performance measures (figure 7a). Notably, the bimolecular

rate constant k1 decreases with temperature for the reaction

with the longer toehold (C þ S! I þ SB), has little tempera-

ture dependence for both reactions with the shorter toehold

(I þ F! C þ OB þ W and I þ SB! C þ S), but increases

with temperature for the two ‘zero toehold’ leak reactions

(S þ F ! L1 þ SB and S þ F ! L2 þ OB)16, where L1 and L2

are KinDA-generated strand-level complexes corresponding

to these two leak pathways. By contrast, the unimolecular

step’s rate constant for the same reactions, k2, increases with

temperature in all cases.17 These trends can be understood

using a phenomenological model for toehold-mediated

strand displacement [58,59] in which an incoming strand,

A, binds to a toehold of length n on the substrate, B, to

form a complex, M, that may subsequently either complete

branch migration to produce X and Y or else dissociate

back into A and B:

Aþ BO
kf

kr
M!

kb
X þ Y:

All else being equal, one would expect kf to have little temp-

erature dependence, kb to scale with the speed of branch

migration, which in the Multistrand model requires a single

base pair to break and thus scales as eDGbp=RT , and kr to

scale with the rate of dissociation for a typical length n

duplex, which in the Multistrand model requires n base

pairs to break and thus scales as enDGbp=RT , where DGbp , 0

is the energy of formation for a single base pair. Phenomen-

ologically, kb 	 kr for the longer toehold at 258C. In this

model,

k1 ¼ kf
kb

kb þ kr
and k2 ¼ kb:

For longer toeholds, kb dominates kr at lower temperatures,

but kr has a stronger dependence on temperature than kb,

speeding up dramatically at high temperatures and thus

causing k1 to decrease as the fraction of successful collisions

drops. By contrast, for shorter (or absent) toeholds, kr domi-

nates kb at all temperatures, and thus k1 increases as kr
decreases. As for the complexes themselves, KinDA’s

bound on temporary depletion was so low at the experimen-

tally demonstrated approximately 10 nM concentrations that

we performed calculations at 100 nM where temporary

depletion is more significant, and even then it becomes sig-

nificant only for C þW and only at low temperatures. At

all temperatures, there was an insignificant fraction of

poorly formed secondary structures, using the default 0.51-

approximation standard. Overall, this analysis suggests that

the sequences in Zhang et al. [7] were well designed.

The phenomenological model, used above to provide an

intuitive quantitative understanding of the temperature

dependence of reaction rate constants, relies on a number

of assumptions that may or may not hold, depending on

sequence quality. The sensitivity of the entropy-driven cata-

lyst design to sequence choices is made clear by KinDA’s

analysis of two variant systems with identical domain-

level structure but modified domain sequences. Figure 7b

considers a system where the four long domains have

been replaced by random sequences using all four nucleo-

tides, in contrast to the original sequences that (mostly)

consisted of just A, T and C—a choice intended to reduce

intramolecular secondary structure as well as spurious

interactions between single-stranded species. Indeed, the

fraction of well-formed complexes is considerably lower,

even with the forgiving 0.51-approximation standard.

Nevertheless, the rate constants for the three designed reac-

tions are quantitatively similar for the two designed

forward reactions, which are not much more than 10 times

slower, although the designed reverse reaction (which is

not essential for function) is up to 1000 times slower.

Orthogonally, figure 7c considers a system where only the

two toehold sequences have been modified, intentionally

strengthening the shorter toehold while weakening the

longer toehold. Not only are the complexes now poorly

formed, with the catalyst C forming an unexpected hairpin

and the fuel F being depleted by dimerization (as confirmed

by NUPACK [45]), but now the initial reaction in the path-

way (Cþ S! I þ SB) is 2–4 orders of magnitude slower

than for the original sequences.

Altogether, for each design and each temperature, KinDA

used Multistrand to obtain rate constants for the three

intended reactions, two leak reactions and all 28 unproduc-

tive reactions. As each reaction is modelled with two

elementary steps (e.g. Aþ B!
k1
C and C!

k2
Dþ E), this results

in a formal CRN with 66 reactions that can be simulated

according to deterministic mass-action chemical kinetics to

study how the various factors interact to yield an observable,

such as the production of the output species. In figure 7d, we

examine the performance of an input catalyst with an initial
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relative concentration of 0.1x, i.e. one-tenth the initial concen-

tration of the substrate. For the experimental concentrations

(x ¼ 10 nM), increasing temperature slows down the original

design roughly twofold, presumably largely due to

Cþ S! I þ SB. The design with modified long domains, in

contrast, is overall slower, but speeds up by roughly twofold.

In both designs, leak accelerates at higher temperatures,

approaching parity with the designed pathways by 608C. In

the design with modified toeholds, no output is produced,

except through leak. An analogous set of CRN simulations,

but for higher concentrations (x ¼ 10 mM), reveals dramati-

cally different phenomena: all designs have little output at

low temperatures, initially increasing with temperature for

the original and long-domain-modified designs. A natural

hypothesis would be that the slow behaviour at low tempera-

ture is due to spurious interactions (secondary structure or

temporary depletion) that are melted at higher temperatures.

At first, this seems consistent with simulations that systema-

tically increase concentrations: at 608C, the amount of output

produced is consistent with an effective bimolecular reaction,

while at 258C, less-than-expected output is produced at

higher concentrations where temporary depletion must

increase. Fortunately, representing the system as a CRN

allows us to test this hypothesis by ‘turning off’ the 28 unpro-

ductive reactions. Simulation of this reduced CRN, which by

construction has no temporary depletion, yields almost iden-

tical plots (data not shown), and points toward an alternative

hypothesis: that at high concentrations reaction the pathways

Zhang et al. [7] modified long domains modified short domains
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Figure 7. Systematic analysis of the temperature, concentration, and sequence dependence of an entropy-driven catalyst. (a) Original sequences from Zhang et al.

[7]. Top plots show rate constants for the three desired reactions and two leak reactions, bottom plots show KinDA’s bound on temporary depletion for 100 nM

maximum concentrations of each species and KinDA’s thermodynamic estimate of the fraction of conformations that are valid 0.51-approximations of the domain-

level resting macrostates. See (b) and (c) for legends. (b) Sequences with modified branch migration domains, shown in red. (c) Sequences with modified toehold

domains, shown in magenta. (d) Simulations of the full set of reactions according to deterministic mass-action chemical kinetics using the rate constants determined

by KinDA. The CRNs considered the three desired reactions, two leak reactions and 28 unproductive reactions; reactions for which Multistrand did not encounter a

successful trajectory were omitted from the CRN for the relevant case. For standard concentration x, the initial concentrations of species were

[C] ¼ 0:1x, [F] ¼ 1:3x , [S] ¼ 1:0x . To compensate for reactions being faster at higher concentrations, the final time of a given simulation was

tfinal ¼ 15(10 nM=x) min. For each sequence design, the final fractions [OB]/x and [L]/x are plotted, where [L] ¼ [L1] þ [L2] is the total concentration of spurious

leak complexes.
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becomes rate-limited by the unimolecular step of

I þ F!
k2
CþOBþW , a hypothesis that can be easily

confirmed.

In summary, KinDA provides powerful tools for examin-

ing the sequence-dependence and temperature-dependence

of complex strand-displacement systems. By representing

the systems as CRNs, KinDA opens up the possibility of

extensive system-level analysis that sheds light both on

underlying biophysical principles and system-level consider-

ations. This understanding can help identify how specific

sequence-level choices can be used to optimize circuit

designs.

4.2. Case study: multiple desired pathways
The power of KinDA comes from its general-purpose formu-

lation and ability to automatically analyse DNA strand-

displacement circuits involving molecular complexes with

arbitrary non-pseudoknotted secondary structure. Why this

generality requires careful treatment of transient complexes,

resting macrostates, detailed and condensed network enu-

meration, and interactions with multiple possible outcomes

is well illustrated by the example shown in figure 8. Here,

we use KinDA to analyse a system adapted from [38] in

which two resting macrostates (A and B), may bind and fall

into one of two fates, P1 ¼ {jC, Dj} or P2 ¼ {jE, Fj} (figure

8a). Figure 8b shows the full condensed reaction graph.18

Sequence-level analysis of each pathway is required to

estimate which pathway, if any, is favoured. Explicitly, the

two pathways we will analyse here are

R1 : Aþ B ! CþD

R2 : Aþ B ! Eþ F:

We consider two sequence variants, one with s set to

weaker (AT-rich) sequence sw ¼ ATATAT and one with s set

to stronger (GC-rich) sequence ss ¼ GCGCGC. Figure 8c,d

shows the sequences, their k1 rate estimates, and the confor-

mation probabilities. While both reactions do occur with

the original sequences, the rate of reaction R2 is slower

than R1 by more than three orders of magnitude. To see

why, we can analyse the resting macrostate B in more

detail. B contains four resting complexes, two of which

favour followingR1 and two of which favourR2. The confor-

mation probabilities for each resting complex are shown in

figure 8d, right. (Here, we relax our similarity requirement

to p-approximation with p ¼ 0.51, because with a higher

value of p many intermediates of branch migration would

be classified as spurious conformations, whereas domains

with partial branch migration will differ from an enumerated

conformation by at most 50% and thus most will be accepted

as a valid approximation when p ¼ 0.51.) Using weaker toe-

hold s ¼ sw, the total probability of either B1 or B2, which

favour R1, is about 10 times greater than that of B3 or B4.

The probabilities are an indicator of the bias of the system

towards one pathway, although they do not account for B

converting between its forms after A has bound and begun

branch migration.

Using the relationship between the conformation probabil-

ities and the relative favourabilities of R1 and R2, we can

attempt to redesign the sequences to alter the magnitude of

the system’s bias. Reasoning that one reason for the bias is

the open loop at the three-way intersection of the three strands,

which provides a strong entropic bias for certain confor-

mations, we might try to counteract this effect via the

strength of the toehold s. Figure 8d shows that, as expected,

using the stronger toehold sequence s¼ ss weakens the bias

against R2, although pathway R1 is still favoured. This indi-

cates some limits to sequence design alone; however, with

reaction schemes that are highly sensitive to relative reaction

rates, the ability to tune these rates quickly provides an

important benefit.

4.3. Case study: mechanisms combining three-way and

four-way branch migration
KinDA can also be used to study DSD systems with complex

domain-level reaction pathways that include both three-way

and four-way branch migration. In figure 9, we simulate

sequence-level dynamics of a catalyst system presented by

Kotani & Hughes [12]. This system, shown in figure 9a, is

more robust against leakage reactions, but includes both

three-way and (generally slower) four-way branch-migration

reactions. Domain-level reaction enumeration reveals that the

two complexes S2 (the second substrate) and R (the reporter),

both initially present at high concentrations, can interact with

a 10 nt ‘toehold’, which is effectively irreversible. The result is

a new resting macrostate S2–R (figure 9b). The subsequent

depletion of the reporter complex can become a problem if

there are multiple competing pathways, but as we can see

in figure 9c the qualitative dynamics of the catalyst system

in isolation is not affected. Note that k1 for the formation of

S2–R is an order of magnitude faster than the fastest

intended reaction, emphasizing the dominance of this reac-

tion pathway; the k2 rate constant is even more exceptional,

reflecting that this pathway just requires zippering of a

helix to complete, whereas the intended reactions require

some form of branch migration. On the other hand, the

results show that the ‘valid’ reaction P1 þ I1! S1 þ C1,

which was enumerated by Peppercorn but appropriately

not mentioned in [12], has an exceptionally small rate. The

given k1 value is only an estimated upper bound, as out of

5 million simulated trajectories starting with complexes

P1 þ I1, none reached complexes S1 þ C1.

The KinDA set-up for this system is as follows: we have

truncated the nucleotide sequence of the reporter complex

so that domain d1s is 2 nt shorter on its 5’ end than d1

used in [12]. This simplified the system specification, as

d1s is used throughout the rest of the system. All other

sequences are the same as presented in the experimental

study (figure 9d ). The simulation temperature is at 558C

(for experimental data at 258C, see [12]). Higher tempera-

tures make the simulation computationally feasible by

speeding up reactions, notably the toehold dissociation

events that often dictate the number of simulation steps

before success and the probability of success itself. While

it is difficult in general to infer DNA dynamics between

different temperatures, the effects on branch migration

with perfectly complementary sequences approximates the

experimentally observed qualitative system dynamics

reasonably well. The simulations use ordered-complex

simulation mode for all but the ‘unintended’ reaction

S2þ R!S2�R, whose simulations use the stricter count-

by-domain mode for reasons explained in the next section.

All rates have relative errors below 40%, with the exception

of the unobserved reverse reaction.
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4.4. Case study: binding reactions and macrostates
The modes ordered-complex, count-by-complex, and count-by-

domain (definition 3.14) modify the simulation stop con-

ditions used by Multistrand. The count-by-domain and

count-by-complex modes force the simulated complexes to

more closely resemble the expected products before a trajec-

tory halts. However, they increase compute time both

because more reaction steps must be simulated and because

at each step a more complex comparison is required to deter-

mine whether the simulation should halt. Using the system

of logic gates designed by Groves et al. [60] (figure 10a,b),

we can illustrate the effect of each mode on the rate estimates

and compute time. This system describes two logic gates

implementing OR and AND logic. In particular, the initial

step of the AND gate does not involve a dissociation step;

thus, simulations in ordered-complex mode will halt

immediately after the two reactants initially bind. This

hides the fact that, in many cases, the two complexes will

immediately dissociate after binding without ever perform-

ing the subsequent four-way branch migration. By contrast,

the second step of the AND gate and both steps of the OR

gate involve dissociation steps and are not subject to this

complication. Sequences are taken from Table S3 of [60]

and shown in figure 10c.
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Figure 8. Analysis of a system with two intended condensed reactions occurring in parallel. (a) The detailed domain-level reaction subnetwork between complexes

in resting macrostates A and B, enumerated by Peppercorn. Three product multisets are possible: fjC, Djg, fjE, Fjg and fjA, Bjg. The full reaction network (not
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Except for domain s, sequences were randomly generated from a four-letter alphabet. (d) Bimolecular rate constant k1 for the original and modified system.

Although k21 is extremely low relative to k11 in the original system, increasing the toehold strength significantly reduces the difference between k
1
1 and k

2
1 . The

conformation probabilities (right) correlate with k1 values for each pathway. This is expected behaviour because conformations B1 and B2 more easily follow

R1 while B3 and B4 more easily follow R2. Conformation probability error bars (not shown) are insignificant.
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Figure 10d shows the KinDA-derived rate estimates for k1
and k2 for each step of each gate. For the AND gate’s first

reaction, the k1 rate decreases by approximately a factor of

two from ordered-complex mode compared to the other

modes. This decrease is likely due to the lower probability

of successfully completing the reaction after binding. The k2
rate decreases dramatically as well because more reaction

time steps must be simulated to reach a state satisfied by

count-by-domain than by count-by-complex or ordered-com-

plex. The corresponding increase in compute time required

for this reaction (figure 10e) justifies the inclusion of

ordered-complex mode for cases when the improved accu-

racy of the other modes is not required. Importantly the

other reactions, which involve dissociation steps, produce

very similar rate estimates in each mode. This indicates that

ordered-complex mode is an appropriate approximation for

reactions of this type.

5. Conclusion
In designing DNA strand-displacement systems, a successful

system is generally highly dependent on having correct reac-

tion rates, which ultimately determine whether molecules

will take on the proper secondary structure and interact

with each other in the proper ways. In a domain-level

system, acceptable values of these rates are assigned to the

various domain-level reactions in the system without concern

for how to generate sequences that will achieve those rates.

Sequence design remains a difficult problem, despite decades

of work and significant advances [1,44,45,61,62], in part

because satisfying thermodynamic criteria has proven to be

computationally more tractable than satisfying kinetic cri-

teria, and the thermodynamic models are more accurate

than existing kinetic models, so that researchers interested

in controlling the kinetics of reactions are often left using

heuristics and special-case solutions [24,63,64].

The KinDA framework allows a researcher to estimate

important parameters of the sequence-level system, using a

general-purpose kinetics model that is continuing to improve,

and determine if the sequences chosen will result in a prop-

erly functioning system. These methods make it possible to

verify the kinetics resulting from a system’s sequence assign-

ments and find the source of potential problems to determine

where sequence changes are needed. Scores such as those

outlined in §3.6 allow automated judgement of sequence

quality.

This paper has shown how the KinDA framework may be

applied to a variety of non-trivial DNA circuits. In particular,

the framework was used to verify a sequence-level system’s

overall behaviour by estimating kinetics for a system’s reac-

tions and performing mass-action ODE simulations based

on the first-step CRN (§§4.1 and 4.3). The framework was

demonstrated in the context of complex domain-level

system architectures, such as macrostates with multiple
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conformations (§§4.2 and 4.3); macrostate collisions with

multiple potential fates (§4.2); macrostate interactions with

multiple pathways towards achieving a final set of products

(§§4.1–4.3); and reaction networks involving four-way and

remote-toehold branch migration steps (§§4.3 and 4.4). The

framework was also used to debug unexpected behaviour

not predicted at the domain level: for instance, identifying

productive reactions that are unacceptably slow, due to spur-

ious conformations or temporary depletion (§§4.1 and 4.2);

and discovering spurious reactions, such as leak pathways

(§4.1). Finally, this paper applied the framework to evaluate

the effect of different sequence choices, a basic and

fundamental sequence design challenge (§4.1).

It is important to note that the accuracy of these methods

is dependent on the accuracy of the underlying sequence-

level simulation software used. Improvements to software

like Multistrand to better match experimental data are

ongoing, and recent advances to the Multistrand’s rate

model (using a reduced and more tractable state space)

have allowed reaction rate estimates to be improved to

within a factor of 3 � for 78.5% of reactions in a comprehen-

sive study [57]. However, this study has noted shortcomings

to its model, such as failing to account for sequence-specific

rigidity differences in hairpin loops and the initiation

energy cost of branch migration. Future improvements to

Multistrand can easily be incorporated into KinDA with

few, if any, changes. Additional modifications are expected

to improve Multistrand’s ability to characterize rare events

efficiently, for example, by applying Markov chain methods

like forward flux [65], energy barrier estimation [66] and

finite state projection [67]. We are hopeful that future

advances in sequence-level simulation methods will improve

the efficacy of these methods.

KinDA may find utility as part of a fully automated

sequence design framework that accounts for kinetics as

well as thermodynamics. For instance, it could be integrated

into a pipeline that uses KinDA to verify potential sequence

assignments proposed by NUPACK’s thermodynamic

sequence design and verification capabilities. In the long

term, there is active research towards developing a nucleic

acid circuit design pipeline to generate complete sequence-

level system specifications by ‘compiling’ statements of

high-level circuit behaviour into the machine code of nucleic

acid computation. Compilers like Nuskell [42] require robust

sequence verification tools such as KinDA. We hope that

future work will apply our methods to continue to make

automated circuit design more tractable for complex systems.
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Endnotes
1This class of systems includes some that, despite the name, do not
make use of strand displacement.
2With user guidance, certain unimolecular reactions may also be
classified as slow, which is often necessary when reversible binding
intermediates are long-lived and should be available to react with
other complexes. This allows effectively trimolecular interactions,
such as those underlying ‘cooperative strand displacement’ [14], to
be modelled as a pathway involving bimolecular and unimolecular
reactions.
3Note that a resting macrostate is not a collection of interacting com-
plexes but rather a collection of different conformations of a single
complex that may readily convert to each other.
4Two strands with the same sequence of domains are distinct if they
have different identifiers. Thus, a modified strand (e.g. with a fluor-
ophore) is distinguishable from an unmodified strand with the same
domains.
5At both the domain and sequence levels, we only consider non-
pseudoknotted secondary structures, which have a well-nested dot-
parens-plus notation representation (i.e. assuming domains are num-
bered sequentially then if domains di and dj are bound, dk and dl are
bound, and i, k , j, then i, k , l , j or i, l, k , j).
6Strand-level complexes are equivalent to ordered complexes, as
defined by NUPACK [45]. In that work, a complex referred to a mol-
ecular component involving the same set of strands but irrespective
of strand order, whereas in this work we use complex to refer to a
specific ordered complex with a specific secondary structure at the
domain level or at the sequence level.

7Two domains may only unbind spontaneously if they are short, as
determined by the reaction enumerator. Short domains are also
called toeholds.
8The first-step model is generalized to reactions with any number of
reactants, althoughKinDAonlyhandles unimolecular andbimolecular
reactions.
9Although this shorthand resembles a condensed reaction, the set of
condensed reactions from the enumeration may not include all unpro-
ductive reactions. In fact, Peppercorn will never include unproductive
reactions when producing the condensed network. Therefore, KinDA
automatically lists and considers the unproductive reactions itself.
10Future advances to the domain-level reaction subnetwork may
obviate the need for the strand-level reaction subnetwork, as would
be necessary to accommodate molecules with multiple distinct
resting macrostates.
11The converse is not necessarily true, as dissociations not in strand-
level reaction subnetwork may not be flagged as spurious. For
instance, for a reactant A:B:C:D (A, B, C, and D are strands) with
two enumerated strand-level reaction pathways A:B:C:D ! A þ
B:C:D ! A þ B þ C:D and A:B:C:D ! B þ A:C:D ! B þ C þ A:D,
the transition B þ A:C:D ! A þ B þ C:D would not render a
trajectory spurious by the definition implemented in KinDA.
12In some cases, the Boltzmann sampled initial states of A and B will
have no available ways to bind with each other. Such a trajectory will
halt immediately and will not be classified as any of the three reaction
types in the first-step model, but will be tallied as part of the rate
estimate for relevant reactions, as described in [48] and §3.5.
13KinDA uses kscale ¼ 1000 by default.
14In this section, we use x for a standard concentration to more easily
discuss scaling concentrations of all species.
15Although the reverse reaction of the first step (I þ SB! C þ S) also
involves dissociation of toehold 5, successful reverse reaction trajec-
tories are exactly those that are fast enough to prevail over the
competing unproductive reaction that involves dissociation by toe-
hold 3. Thus, the kinetics of dissociation by toehold 3 dictate the k2
for this reaction.
16Both of these leak reactions will eventually produce OB þ SB þW,
but KinDA stops Multistrand simulations as soon as an off-pathway
strand-level complex is encountered, thus distinguishing trajectories
for which SB is release first from those for which OB is released
first. The less probable pathway was only encountered for T � 408C.
17It may seem remarkable that k2 for C þ S! I þ SB and for I þ SB
! C þ S are apparently identical, despite their k1 values being differ-
ent by roughly two orders of magnitude. However, it is a necessary
consequence of flux balance between macrostates in an equilibrium
system whose microscopic rates satisfy detailed balance, as is the
case with the Multistrand’s kinetic model and FSM’s Boltzmann
sampling of initial conformations.
18Note that Peppercorn has enumerated an unexpected resting
macrostate not shown in figure 8a, G. This unintended domain-
level feature could be analysed by KinDA as with any other
enumerated feature.
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B, Louis AA, Doye JPK, Winfree E. 2013 On the

biophysics and kinetics of toehold-mediated DNA

strand displacement. Nucleic Acids Res. 41, 10

641–10 658. (doi:10.1093/nar/gkt801)

60. Groves B, Chen Y-J, Zurla C, Pochekailov S,

Kirschman JL, Santangelo PJ, Seelig G. 2016

Computing in mammalian cells with nucleic acid

strand exchange. Nat. Nanotechnol. 11, 287–294.

(doi:10.1038/nnano.2015.278)

61. Dirks RM, Lin M, Winfree E, Pierce NA. 2004 Paradigms

for computational nucleic acid design. Nucleic Acids

Res. 32, 1392–1403. (doi:10.1093/nar/gkh291)

62. Wolfe BR, Porubsky NJ, Zadeh JN, Dirks RM, Pierce NA.

2017 Constrained multistate sequence design for

nucleic acid reaction pathway engineering. J. Am. Chem.

Soc. 139, 3134–3144. (doi:10.1021/jacs.6b12693)

63. Zhang DY. 2010 Towards domain-based sequence

design for DNA strand displacement reactions. In DNA

computing and molecular programming, vol. 6518

(eds Y Sakakibara, Y Mi). Lecture Notes in Computer

Science, pp. 162–175. Berlin, Germany: Springer.

64. Sherry Wang J, Zhang DY. 2015 Simulation-guided

DNA probe design for consistently ultraspecific

hybridization. Nat. Chem. 7, 545–553. (doi:10.

1038/nchem.2266)

65. Allen RJ, Valeriani C, ten Wolde PR. 2009 Forward

flux sampling for rare event simulations. J. Phys.:

Condens. Matter 21, 463102. (doi:10.1088/0953-

8984/21/46/463102)

66. Wolfinger MT, Andreas Svrcek-Seiler W, Flamm C,

Hofacker IL, Stadler PF. 2004 Efficient computation

of RNA folding dynamics. J. Phys. A: Math. Gen. 37,

4731–4741. (doi:10.1088/0305-4470/37/17/005)

67. Munsky B, Khammash M. 2006 The finite state

projection algorithm for the solution of the

chemical master equation. J. Chem. Phys. 124,

044104. (doi:10.1063/1.2145882)

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
15:

20180107

21


	Automated sequence-level analysis of kinetics and thermodynamics for domain-level DNA strand-displacement systems
	Introduction
	Background
	Basic concepts
	Current methods of domain-level system analysis
	Current methods of sequence-level system verification

	Methods
	Basic definitions
	Software dependencies
	Relating domain-level and sequence-level resting macrostates and secondary structure
	Relating domain-level and sequence-level reaction pathways and reaction rates
	Estimating system parameters
	Estimating conformation probabilities
	Estimation of pi
	Error estimation for pi

	Estimating reaction rates (bimolecular reactions)
	Estimation of k1
	Error estimation for k1
	Estimation of k2
	Error estimation for k2

	Estimating reaction rates (unimolecular reactions)
	Estimation of k1
	Error estimation for k1
	Estimation of k2
	Error estimation for k2


	Usage and interpretation of the analysis framework

	Results
	Case study: entropy-driven catalyst
	Case study: multiple desired pathways
	Case study: mechanisms combining three-way and four-way branch migration
	Case study: binding reactions and macrostates

	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


